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Abstract

1 INTRODUCTION AND KNOWN RESULTS

Sample Size Requirements For
Feedforward Neural Networks

network complexity training set size sta-
tistical performance

unknown
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We estimate the number of training samples required to ensure that
the performance of a neural network on its training data matches
that obtained when fresh data is applied to the network. Existing
estimates are higher by orders of magnitude than practice indicates.
This work seeks to narrow the gap between theory and practice by
transforming the problem into determining the distribution of the
supremum of a random field in the space of weight vectors, which
in turn is attacked by application of a recent technique called the
Poisson clumping heuristic.

We investigate the tradeoffs among , , and
of feedforward neural networks so as to allow a reasoned choice

of network architecture in the face of limited training data. Nets are functions
( ; ), parameterized by their weight vector , which take as input
points . For classifiers, network output is restricted to 0 1 while for fore-
casting it may be any real number. The architecture of all nets under consideration
is , whose complexity may be gauged by its Vapnik-Chervonenkis (VC) dimension
, the size of the largest set of inputs the architecture can classify in any desired way
(‘shatter’). Nets are chosen on the basis of a training set = ( ) .
These samples are i.i.d. according to an probability law . Performance
of a network is measured by the mean-squared error

( ) = ( ( ; ) ) (1)

= ( ( ; ) = ) (for classifiers) (2)
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and a good (perhaps not unique) net in the architecture is = argmin ( ).
To select a net using the training set we employ the empirical error

( ) =
1

( ( ; ) ) (3)

sustained by ( ; ) on the training set . A good choice for a classifier is then
= argmin ( ). In these terms, the issue raised in the first sentence of the

section can be restated as, “How large must be in order to ensure ( ) ( )
with high probability?”

For purposes of analysis we can avoid dealing directly with the stochastically chosen
network by noting

( ) ( ) ( ) ( ) + ( ) ( ) 2 sup ( ) ( )

A bound on the last quantity is also useful in its own right.

The best-known result is in (Vapnik, 1982), introduced to the neural network com-
munity by (Baum & Haussler, 1989):

( sup ( ) ( ) ) 6
(2 )

!
(4)

This remarkable bound not only involves no unknown constant factors, but holds
independent of the data distribution . Analysis shows that sample sizes of about

= (4 ) log 3 (5)

are enough to force the bound below unity, after which it drops exponentially to
zero. Taking = 1, = 50 yields = 68 000, which disagrees by orders of
magnitude with the experience of practitioners who train such simple networks.

More recently, Talagrand (1994) has obtained the bound

( sup ( ) ( ) ) (6)

yielding a sufficient condition of order , but the values of and are inac-
cessible so the result is of no practical use.

Formulations with finer resolution near ( ) = 0 are used. Vapnik (1982) bounds
(sup ( ) ( ) ( ) )—note ( ) ( ( )) when
( ) 0—while Blumer et al. (1989) and Anthony and Biggs (1992) work with
(sup ( ) ( ) 1 ( ( )) ). The latter obtain the sufficient condi-
tion

= (5 8 ) log 12 (7)

for nets, if any, having ( ) = 0. If one is guaranteed to do reasonably well on
the training set, a smaller order of dependence results.

Results (Turmon & Fine, 1993) for perceptrons and a Gaussian mixture imply
that at least 280 samples are needed to force ( ) ( ) 2 with high
probability. (Here is the best linear discriminant with weights estimated from
the data.) Combining with Talagrand’s result, we see that the general (not assuming
small ( )) functional dependence is .
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2 APPLYING THE POISSON CLUMPING HEURISTIC

See ch. 7 of (Pollard, 1984) for treatment of some technical details in this limit.
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We adopt a new approach to the problem. For the moderately large values of
we anticipate, the central limit theorem informs us that [ ( ) ( )] has
nearly the distribution of a zero-mean Gaussian random variable. It is therefore
reasonable to suppose that

( sup ( ) ( ) ) ( sup ( ) ) 2 ( sup ( ) )

where ( ) is a Gaussian process with mean zero and covariance

( ) = ( ) ( ) = ( ( ; )) ( ( ; ))

The problem about extrema of the original empirical process is equivalent to one
about extrema of a corresponding Gaussian process.

The Poisson clumping heuristic (PCH), introduced in the remarkable (Aldous,
1989), provides a general tool for estimating such exceedance probabilities. Con-
sider the excursions above level (= 1) by a stochastic process ( ). At
left below, the set : ( ) is seen as a group of “clumps” scattered in weight
space . The PCH says that, provided has no long-range dependence and the
level is large, the centers of the clumps fall according to the points of a Poisson
process on , and the clump shapes are independent. The vertical arrows (below
right) illustrate two clump centers (points of the Poisson process); the clumps are
the bars centered about the arrows.

In fact, with ( ) = ( ( ) ), ( ) the size of a clump located at , and
( ) the rate of occurrence of clump centers, the fundamental equation is

( ) ( ) ( ) (8)

The number of clumps in is a Poisson random variable with parameter
( ) . The probability of a clump is ( 0) = 1 exp ( )
( ) where the approximation holds because our goal is to operate in a

regime where this probability is near zero. Letting Φ̄( ) = ( (0 1) ) and
( ) = ( ), we have ( ) = Φ̄( ( )). The fundamental equation becomes

( sup ( ) )
Φ̄( ( ))

( )
(9)

It remains only to find the mean clump size ( ) in terms of the network archi-
tecture and the statistics of ( ).
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3 POISSON CLUMPING FOR SMOOTH PROCESSES
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Lemma 1 (Smooth process clump size)
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Let the network activation functions
be twice continuously differentiable, and let . Then
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Assume ( ) has two mean-square derivatives in . (If the network activation
functions have two derivatives in , for example, ( ) will have two almost sure
derivatives.) then has a parabolic approximation about some via its gradient
= ( ) and Hessian matrix = ( ) at . Provided , that is

that there is a clump at , simple computations reveal

( )
(2( ) )

(10)

where is the volume of the unit ball in and is the determinant. The mean
clump size is the expectation of this conditioned on ( ) .

The same argument used to show that ( ) is approximately normal shows that
and are approximately normal too. In fact,

[ ( ) = ] =
( )

Λ( )

Λ( ) = ( ) = ( )

so that, since (and hence ) is large, the second term in the numerator of (10)
may be neglected. The expectation is then easily computed, resulting in

( )

( ) (2 )
Λ( )

( )

( )

Substituting into (9) yields

( sup ( ) ) (2 )
Λ( )

( ) ( )
(11)

where use of the asymptotic expansion Φ̄( ) ( 2 ) exp( 2) is justified
since ( ) ( ) is necessary to have the individual ( ( ) ) low—let alone
the supremum. To go farther, we need information about the variance ( ) of
( ( ; )) . In general this must come from the problem at hand, but suppose
for example the process has a unique variance maximum ¯ at ¯. Then, since
the level is large, we can use Laplace’s method to approximate the -dimensional
integral.

Laplace’s method finds asymptotic expansions for integrals

( ) exp( ( ) 2)

when ( ) is with a unique positive minimum at in the interior of ,
and ( ) is positive and continuous. Suppose ( ) 1 so that the exponential
factor is decreasing much faster than the slowly varying . Expanding to second
order about , substituting into the exponential, and performing the integral shows
that

( ) exp( ( ) 2) (2 ) ( ) ( ) exp( ( ) 2)
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4 ANOTHER MEANS OF COMPUTING CLUMP SIZE
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Let the network activation functions be twice continuously differen-
tiable. Let the variance have a unique maximum at in the interior of and
the level . Then the PCH estimate of exceedance probability is given by

where . Furthermore, is positive-definite at ;
it is the Hessian of . The leading constant thus strictly exceeds unity.

where = ( ) , the Hessian of . See (Wong, 1989) for a proof. Applying
this to (11) and using the asymptotic expansion for Φ̄ in reverse yields

¯ ¯
¯

( sup ( ) )
Λ( ¯)

Λ( ¯) Γ( ¯)
Φ̄( ¯) (12)

Γ( ¯) = ( ) Λ Γ ¯
1 2 ( )

The above probability is just ( ( ¯) ) multiplied by a factor accounting for the
other networks in the supremum. Letting = reveals

=
¯ log( Λ( ¯) Λ( ¯) Γ( ¯) )

(13)

samples force (sup ( ) ( ) ) below unity. If the variance maximum is
not unique but occurs over a -̄dimensional set within , the sample size estimate
becomes proportional to ¯ ¯ . With ¯ playing the role of VC dimension , this
is similar to Vapnik’s bound although we retain dependence on and .

The above probability is determined by behavior near the maximum-variance point,
which for example in classification is where ( ) = 1 2. Such nets are uninterest-
ing as classifiers, and certainly it is undesirable for them to dominate the entire
probability. This problem is avoided by replacing ( ) with ( ) ( ), which ad-
ditionally allows a finer resolution where ( ) nears zero. Indeed, for classification,
if is such that with high probability

sup
( ) ( )

( )
= sup

( ) ( )

( )(1 ( ))
(14)

then ( ) = 0 ( ) (1 + ) . Near ( ) = 0, condi-
tion (14)/ is much more powerful than the corresponding unnormalized one. Sample
size estimates using this setup give results having a functional form similar to (7).

Conditional on there being a clump center at , the upper bound

( ) ( ) 1 ( ( ) ) (15)

is evidently valid: the volume of the clump at is no larger than the total volume of
all clumps. (The right hand side is indeed a function of because we condition on
occurrence of a clump center at .) The bound is an overestimate when the number
of clumps exceeds one, but recall that we are in a regime where (equivalently
) is large enough so that ( 1) ( = 1) ( ) 1. Thus error
in (15) due to this source is negligible. To compute its mean, we approximate

( ) = ( ( ) a clump center)
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5 EMPIRICAL ESTIMATES OF CLUMP SIZE

Lemma 2 (Clump size estimate)

Remark 1.

Remark 2.
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( ( ) ( ) ) (16)

The point is that occurrence of a clump center at is a smaller class of events than
merely ( ) : the latter can arise from a clump center at a nearby
capturing . Since ( ) and ( ) are jointly normal, abbreviate = ( ),
= ( ), = ( ) = ( ) ( ), and let

= ( ) = ( )
1

1
(17)

= (1 ) (1 + ) (constant variance case) (18)

Evaluating the conditional probabilities of (16) presents no problem, and we obtain

( ) ( ) Φ̄ (( ) ) (19)

This integral will be used in (9) to find

(sup ( ) )
Φ̄( )

Φ̄ (( ) )
(20)

Since is large, the main contribution to the outer integral occurs for near a
variance maximum, i.e. for 1. If the variance is constant then all
contribute. In either case is nonnegative. By lemma 1 we expect (19) to be, as
a function of , of the form (const ) for, say, = . In particular, we do not
anticipate the exponentially small clump sizes resulting if ( ) ( ) 0.
Therefore should approach zero over some range of , which happens only when

1, that is, for near . The behavior of ( ) for is the key to
finding the clump size.

There is a simple interpretation of the clump size; it represents the
volume of for which ( ) is highly correlated with ( ). The exceedance
probability is a sum of the point exceedance probabilities (the numerator of (20)),
each weighted according to how many other points are correlated with it. In effect,
the space is partitioned into regions that tend to “have exceedances together,”
with a large clump size ( ) indicating a large region. The overall probability
can be viewed as a sum over all these regions of the corresponding point exceedance
probability. This has a similarity to the Vapnik argument which lumps networks
together according to their ! possible actions on items in the training set. In
this sense the mean clump size is a fundamental quantity expressing the ability of
an architecture to generalize.

The clump size estimate of lemma 2 is useful in its own right if one has information
about the covariance of . Other known techniques of finding ( ) exploit
special features of the process at hand (e.g. smoothness or similarity to other well-
studied processes); the above expression is valid for any covariance structure. In
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6 SUMMARY AND CONCLUSIONS
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this section we show how one may the clump size using the training set,
and thus obtain probability approximations in the absence of analytical information
about the unknown and the potentially complex network architecture .

Here is a practical way to approximate the integral giving ( ). For 1 define
a set of significant

( ) = : ( ) ( ) = vol( ( )) ; (21)

then monotonicity of Φ̄ yields ( ) Φ̄(( ) ) ( ) Φ̄(( ) ).

This apparently crude lower bound for Φ̄ is accurate enough near the origin to give
satisfactory results in the cases we have studied. For example, we can characterize
the covariance ( ) of the smooth process of lemma 1 and thus find its func-
tion. The bound above is then easily calculated and differs by only small constant
factors from the clump size in the lemma.

The lower bound for ( ) yields the upper bound

(sup ( ) )
Φ̄( )

( ) Φ̄(( ) )
(22)

We call ( ) the , as it represents those weight vectors whose
errors ( ) are highly correlated with ( ); one simple way to estimate the cor-
relation volume is as follows. Select a weight and using the training set compute

( ( ; )) ( ( ; )) & ( ( ; )) ( ( ; ))

It is then easy to estimate , , and , and finally ( ), which is compared
to the chosen to decide if ( ).

The difficulty is that for large , ( ) is far smaller than any approximately-
enclosing set. Simple Monte Carlo sampling and even importance sampling methods
fail to estimate the volume of such high-dimensional convex bodies because so few
hits occur in probing the space (Lovász, 1991). The simplest way to concentrate the
search is to let = except in one coordinate and probe along each coordinate
axis. The correlation volume is approximated as the product of the one-dimensional
measurements.

Simulation studies of the above approach have been performed for a perceptron
architecture in input uniform over [ 1 1] . The integral (22) is computed by Monte
Carlo sampling, and based ona training set of size 100 , ( ) is computed at each
point via the above method. The result is that an estimated sample size of 5 4
is enough to ensure (14) with high probability. For nets, if any, having ( ) = 0,
sample sizes larger than 5 4 will ensure reliable generalization, which compares
favorably with (7).

To find realistic estimates of sample size we transform the original problem into
one of finding the distribution of the supremum of a derived Gaussian random
field, which is defined over the weight space of the network architecture. The
latter problem is amenable to solution via the Poisson clumping heuristic. In terms
of the PCH the question becomes one of estimating the mean clump size, that
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is, the typical volume of an excursion above a given level by the random field.
In the “smooth” case we directly find the clump volume and obtain estimates of
sample size that are (correctly) of order . The leading constant, while explicit,
depends on properties of the architecture and the data—which has the advantage
of being tailored to the given problem but the potential disadvantage of our having
to compute them.

We also obtain a useful estimate for the clump size of a general process in terms of
the correlation volume ( ). For normalized error, (22) becomes approximately

sup
( ) ( )

( )

vol( )

( )

where the expectation is taken with respect to a uniform distribution on . The
probability of reliable generalization is roughly given by an exponentially decreasing
factor (the exceedance probability for a single point) times a number representing
degrees of freedom. The latter is the mean size of an equivalence class of “similarly-
acting” networks. The parallel with the Vapnik approach, in which a worst-case
exceedance probability is multiplied by a growth function bounding the number of
classes of networks in that can act differently on pieces of data, is striking. In
this fashion the correlation volume is an analog of the VC dimension, but one that
depends on the interaction of the data and the architecture.

Lastly, we have proposed practical methods of estimating the correlation volume
empirically from the training data. Initial simulation studies based on a perceptron
with input uniform on a region in show that these approximations can indeed
yield informative estimates of sample complexity.
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